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ABSTRACT 

Solving the hard Satisfiability Problem is time consuming 
even for modest-sized problem instances. Solving the Ran- 
dom L-SAT Problem is especially difficult due to the ratio 
of clauses to variables. This report presents a parallel syn- 
chronous simulated annealing method for solving the Ran- 
dom L-SAT Problem on a large-scale distributed-memory 
multiprocessor. In particular, we use a parallel synchronous 
simulated annealing procedure, called Generalized Specula- 
tive Computation, which guarantees the same decision se- 
quence as sequential simulated annealing. To demonstrate 
the performance of the parallel method, we have selected 
problem instances varying in size from 100-variables/425- 
clauses to 5OOO-variables/21,25O-clauses. Experimental re- 
sults on the APlOOO multiprocessor indicate that our ap- 
proach can satisfy 99.9% of the clauses while giving almost 
a 70-fold speedup on 500 processors. 

1 INTRODUCTION 

The Satisfiability (SAT) Problem refers to finding a truth 
assignment of variables which evaluates clauses to true [3,4]. 
Applications of the SAT Problem can be found in numerous 
areas, including computational complexity, graph coloring, 
logic, operations research, and artificial intelligence. The 
SAT Problem consists of a set of variables 211, 212,. . . , w,, 
a set of clauses Cl,G2 ,..., C,, and operators A (AND), 
V (OR), and 7 (NOT). A variable can either be true or 
false. A variable or the negation of a variable is called a 
literal. A clause consists of one or more literals. A clause 
with two literals such as C = a V b, will be true if at least 
one of the literals is true. The SAT Problem is to deter- 
mine if there is an assignment of variables that evaluates 
the formula GI A C2 A . . . A C, to true. The Maximum 
Satisfiability (MAX-SAT) Problem refers to finding a truth 
assignment of variables such that the number of true clauses 
is maximized [7]. 

The SAT Problem with a small number of variables and 
clauses such as a 10-variable/20-clause instance with three 
variables per clause can be tested for satisfiability with rea- 
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sonable effort. However, the task becomes challenging when 
the problem size increases to several hundred variables. It 
is not straightforward to find if there is an assignment that 
can satisfy all the clauses, or that maximizes the number of 
true clauses. What is even more interesting is that there is 
a class of problems, called Random L-SAT Problems, which 
are extremely difficult to evaluate and require long execu- 
tion times. The report by Mitchell et al. [13] indicated that 
when the ratio of clauses to variables is approximately 4.25 
for clause length 3, the problem becomes extremely difficult 
to solve. When the ratio is higher, the problem instances are 
not solvable. Kirkpatrick and Selman [lo] explained that 
there exists a threshold value for a given SAT Problem that 
can predict the fraction of unsatisfiable clauses. 

Many methods have been developed to date to solve the 
SAT Problem and tend to be heuristic and greedy in na- 
ture [5,7,13,14]. Franc0 and P a d  [5] analyzed the proba- 
bilistic performance of solving randomly-generated SAT in- 
stances. Selman and Kautz [14] found that local greedy 
search was successful in solving some of the Random L-SAT 
Problem instances. Spears [17] found that simulated an- 
nealing can be an efficient method to solve the Random 
L-SAT instances with approximately a 50% success rate. 
The major drawback of these methods is the long execution 
time. Studies have shown that most Random L-SAT Prob- 
lem instances require several hours, and often a few days, on 
single-processor sequential machines [17]. These long execu- 
tion times clearly indicate that testing the SAT Problem on 
a sequential machine can be intolerable, and often imprac- 
tical, for realistically-sized problem instances. It is precisely 
the purpose of this work to investigate the possibility of 
solving the SAT Problem on parallel machines. 

We solve Random L-SAT Problem instances using par- 
allel synchronous simulated annealing [16] on a large-scale 
distributed-memory multiprocessor. Simulated annealing is 
chosen because it is known to provide high solution qual- 
ity for combinatorial optimization problems. We choose a 
synchronous method as opposed to an asynchronous one be- 
cause it preserves the convergence property of simulated 
annealing which, in turn, can yield high-quality solutions. 
While synchronous simulated annealing is inherently sequen- 
tial due to its dependence between iterations, we introduce 
an efficient parallel technique, called Generalized Specula- 
tive Computation, which can execute P different iterations 
in parallel on P processors. In other words, this parallel 
method preserves the convergence property, solution qual- 
ity, and decision sequence of sequential simulated annealing. 
It provides exactly the same solution but much more quickly 
by using massively-parallel machines. This fast turnaround 
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would allow practitioners to accurately examine the behav- 
iors of various SAT Problem instances in a short time. 

2 SIMULATED ANNEALING FOR T H E  SAT PROBLEM 

Simulated annealing (SA) is one of the most efficient meth- 
ods for solving combinatorial optimization problems [9]. 
Given the search space, the method attempts to find the 
global minimum state. The motivation behind developing 
such a search method is based on the analogy the way met- 
als cool and anneal as their temperatures decrease. A typi- 
cal implementation of SA consists of two nested loops. The 
outer loop controls the temperature based on the annealing 
schedule. The inner loop performs the three steps of eval- 
uate, decide, and modify for the given temperature. The 
evaluation step suggests the next possible state by generat- 
ing random numbers and evaluates it by using some criteria. 
The decision step decides whether the suggested state is ac- 
ceptable. If the suggested state is indeed acceptable, the 
modification step updates the data according to the specifi- 
cations of the evaluation step. The sequential SA technique 
as well as its parallel versions have been applied to various 
optimization problems [SI, including VLSI cell placement 
[1,2,11], the Traveling Salesman Problem [16], the Satisfia- 
bility Problem [17], and task assignment problems [18]. 

Figure 1 shows our implementation of sequential SA for 
the SAT Problem. While SA is usually implemented as two 
nested loops, our version uses three nested loops to detect 
those rare configurations at low temperatures. The outer- 
most loop is a trial loop which changes the decay rate, the 
rate at which the temperature is lowered. The middle loop is 
a temperature loop which lowers the temperature based on 
the decay rate. The innermost loop executes the three steps 
of evaluate, decide, and modify, for the given temperature. 

T = To; // initial temperature 
cs = 1; // decay rate 
for i = 1 to ntry 

// # clauses 
// # variables 

// # trials 
for j = 1 to nclause 

for k = 1 to Pavariable 
1: 
2: 
3: CLAUSE = modify(CLAUSE, flag); 

AN = evaluate(CLAUSE, i ,  j ,  k); 
f lag = decide(AN, T, E); 

T = T * (1.0 - CS * ( l . O / ( j  + 10.0))); 
cs = 0.9 * cs; 

Figure 1: Sequential simulated annealing. 

The evaluation step in line 1 of Fig. 1 randomly selects 
a variable to flip. By pretending to flip the variable, the 
step evaluates AN, the difference between the previous true 
clauses and the new true clauses. The decision step in line 2 
decides if the new solution is acceptable. It generates a 
flag which is set either to OK (accept) or NOK (reject). This 
step uses the Metropolis equation [12] in order to decide. 
The flag is OK if A N  > E and NoK if AN < -E, where 
E is a predefined error threshold (we chose E = 10). For 
-E 5 A N  5 E, flag is OK if 1/(1+ > r ,  where 
0 < T < 1. If flag is OK, the modification step in line 3 
actually flips the variable, which appears in several clauses, 
resulting in new clauses. I f f  lag is NOK, no data modification 
takes place. 

For Random L-SAT Problem instances where the clause- 
to-variable ratio is 4.25 for a clause length of 3, a vari- 
able appears in about 30 clauses. The modify step there- 
fore updates approximately 30 clauses if the decision is ac- 
cepted. The algorithm in Fig. 1 terminates either when all 

the clauses are satisfied or all the iterations are exhausted. 
For our implementation of the SAT Problem, the outermost 
loop is set to ntry = 10 trials. This allows us to change the 
decay rate, enabling us to detect rare configurations of the 
search space at the tail of SA. 

The SA algorithm shown in Fig. 1 is highly sequential 
because of two reasons. First, the innermost loop has a 
loopcarried dependence. Iteration k may modify the data, 
based on which iteration k + 1 must proceed. Second, each k 
iteration has true data dependencies. The three steps within 
each iteration are executed sequentially. It is apparent from 
Fig. 1 that line 2 uses the AN computed in line 1. Line 3 
uses the result of line 2. It is thus not possible to execute 
individual k iterations simultaneously. In the next section, 
we describe how this innermost loop can be executed in par- 
allel to a certain extent by using a method called speculative 
computation. 

3 GENERALIZED SPECULATIVE COMPUTATION 

This section describes how we parallelize SA for solving 
the hard SAT Problem. We generalize binary speculative 
computation using an wary speculative tree, which we call 
Generalized Speculative Computation (GSC). A detailed ex- 
ample is presented to demonstrate how the new method is 
mapped to a multiprocessor. 

3.1 THE IDEA 

GSC uses an wary tree. Figure 2 shows an n-ary specula- 
tive tree with three levels. Note that the speculative tree is 
dynamically determined at runtime and is unrelated to the 
interconnection network topology of the machine. Each pro- 
cessor receives an unique k index at runtime and performs 
the three steps: modify, evaluate, and decide. It then sets 
a flag to indicate its decision. The lowest-numbered loop 
index returning an accept decision is selected to initiate the 
next level. To ensure that the parallel version generates the 
same decision sequence as sequential SA, we use an identi- 
cal sequence of seeds to generate random numbers. There 
k a total of ntry x nclause x nvariable seeds. A loop index 
[i, j ,  k] used as a seed, therefore, generates a unique random 
number for selecting a variable. Figure 2 shows a total of 
11 (not 16) iterations executed in three levels, as explained 
below. 

The first level of the n-ary speculative tree shows seven 
processors executing seven iterations simultaneously. P pro- 
cessors can execute a maximum of P iterations in paral- 
lel. Suppose that processors P3, P4, and P6 indicate that 
their decisions are acceptable (filled circles in Fig. 2 denote 

processor number iteration number 

Figure 2: An 7-ary speculative tree with three levels. 
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Figure 3: GSC on seven processors. The letters C, D, E, and M denote communicate, decide, evaluate, and modify, respec- 
tively. Solid arrows indicate broadcast while dashed arrows indicate point-to-point communication. Filled squares represent 
acceptable decisions. 

acceptable decisions). However, the decision made by the 
lowest-numbered processor (or the lowest loop index) is ac- 
cepted since decisions made by higher-numbered processors 
may be incorrect. In this example, the decision by P3 is 
accepted. The decision made by P4 could be incorrect since 
the data that it used should have been modified by P3. It 
cannot provide a reliable decision based on the current data. 
Similarly, the decisions made by P5, P6, and P7 are also in- 
correct because they are all based on wrong data. 

The second level begins from iteration 5, executing iter- 
ations 5 to 11 in parallel. Each processor receives the loop 
index 4 based on which it modifies the data. After modifica- 
tions, each processor performs the evaluation and decision 
steps by computing its iteration index. A processor can com- 
pute its individual index from the successful iteration index 
and its processor identification number (PID). We assume 
in Fig. 2 that at the second level, decisions made by P4 and 
P5 are acceptable. Once again, the decision made by P4 is 
selected since it is the lowest-numbered processor returning 
an accept decision. 

The third level then starts from iteration 10, executing 
seven iterations in parallel. The process terminates when 
there is no OK decision in the innermost loop. The method 
presented therefore computed 11 iterations in three levels of 
the speculative tree. Note that a maximum of three itera- 
tions can be computed by the same number of levels of a 
binary speculative tree. 

3.2 GSC ON A MULTIPROCESSOR 

Figure 3 gives a mapping of GSC to seven processors. Let 
PO be the master processor and P1, P2, ..., P6 be the slave 
processors. GSC proceeds as follows: 
0 PO sends the loop index [1,1,1] to P1, P2, ..., P6. PO then 

works on the evaluation and decision steps. 
0 After receiving the loop index from PO, each slave pro- 

cessor computes its own index by using its PID, and then 
performs the evaluation and decision steps. When done, 
each slave reports its result ( f l a g )  and PID to PO. 

0 When PO completes its evaluation and decision steps of 

index [1,1,1], it collects flags from all the slave processors 
and itself. 

0 PO uses the accept decision from the lowest PID to set the 
new loop index. Assuming that P3 is the processor with 
the lowest PID to return an OK f l a g ,  PO sends the new 
index [1,1,4] to P1, P2, ..., P6. 

0 All processors, including PO, modify their local data using 
[1,1,4]. This completes level 1. 

0 As soon as a processor completes the modification step, it 
begins executing the next level. 

Figure 3 shows that the GSC method completes nine it- 
erations in two levels on seven processors. In the best case, 
the highest-numbered processor, P6, is the only one to re- 
turn an OK f l a g .  In that case, GSC can execute seven iter- 
ations at each level. In the worst case, the lowest-numbered 
processor, PO, returns a decision to accept. This case is 
identical to sequential SA, and may even be slower due to 
communication overhead. 

4 EXPERIMENTAL RESULTS 

This section presents our implementation of GSC on the 
APlOOO multiprocessor. We give a brief description of the 
APlOOO machine architecture and its programming environ- 
ment, followed by a report of execution results. 

4.1 THE APlOOO MULTIPROCESSOR 

The Random L-SAT Problem and GSC have been com- 
pletely implemented with various problem sizes and param- 
eters. Problem instances were created by using the Ran- 
dom L-SAT generator [13,14], where the ratio of clauses to 
variables is 4.25 for a clause length of 3. We use the 1024 
processor APlOOO distributed-memory multiprocessor which 
was built by and is currently operational at  the Fujitsu Par- 
allel Computing Research Facility in Japan.' The primary 

'The 1024 processors are currently configured as a single 512- 
processor system and several smaller systems. The entire 1024- 
processor system is available to the general public once in a while. 
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Figure 4: The APlOOO machine architecture. 

reason we chose the APlOOO is that its large number of pro- 
cessors allows us to perform full-scale experiments. 

The APlOOO is a general-purpose distributed-memory 
multiprocessor. Its performance on various real-world prob- 
lems has been reported in Fujitsu Parallel Computing Work- 
shops [19]. Figure 4 shows the machine architecture. Pro- 
cessing elements, called cells, are connected through three 
independent interconnection networks: a broadcast network 
(B-net), a torus network (T-net), and a synchronization net- 
work (S-net). A host Sun4 computer is connected to the B- 
net to control the AP1000. The B-net is used to broadcast 
data to all cells from the host or any individual cell. The 
S-net is used to synchronize various cell activities while the 
T-net allows point-to-point communication between cells. 
Each cell consists of an integer unit, a floating point unit, a 
message controller, network interface units, 128 KB of cache, 
and 16 MB of memory. More details about the architecture 
are available in [8,15]. 

All our computer codes are written in C with various 
parallel constructs for message-passing and synchronization. 
The APlOOO programming environment provides various de- 
bugging utilities including a runtime monitor, a performance 
analyzer, and the CASIM simulator which can run on work- 
stations. We have found CASIM to be particularly helpful 
during code development since we did not have to  directly 
deal with the real machine. There are certainly limitations 
of using the simulator since subtle bugs such as synchro- 
nization errors cannot be detected. These types of bugs 
only manifest on the APlOOO since they involve very subtle 
timing problems. We were fortunate not to have such bugs 
in our implementation mainly because of the master-slave 
parallel programming paradigm. 

4.2 PARALLEL PERFORMANCE 

Table 1 lists the number of levels required for initial tem- 
peratures of 10.0 and 100.0 on 1 to 500 processors. This 

indicates the amount of potential parallelism of the GSC 
method. Table 2 gives the execution times in seconds for 
the same cases. This indicates the amount of parallelism 
that is actually achieved. 

Table 3 shows the average and total execution times of 
the individual steps for the 1000-variable/4250-clause SAT 
instance with an initial temperature of 10.0. Recall that 
each processor executes an unique iteration consisting of 
four steps: evaluate, decide, communicate, and modify. The 
time required for loop control and temperature update are 
included in the evaluation time. The table also shows the 
number of required levels for a given number of processors. 
The number of processors used for a particular run deter- 
mines the number of levels. 

This paper does not attempt to  address issues related to 
solution quality, nor claim that GSC of SA is the most ef- 
ficient method to solve Random L-SAT Problem instances. 
In fact, it is redundant to  discuss the solution quality of this 
approach as it produces exactly the same solution as sequen- 
tial SA. However, it is important to highlight the solution 
quality for the problem instances in this paper. Solution 
quality is defined as the percentage of clauses that are satis- 
fied. Table 4 presents how GSC performed on large problem 
instances of up to 5000 variables while Table 5 lists solution 
quality in terms of the initial temperature. 

5 PERFORMANCE EVALUATION AND DISCUSSION 

Results reported in the previous section are analyzed to  eval- 
uate the performance of GSC. We first present the source of 
parallelism to identify potential performance. Next, execu- 
tion time speedup curves are given to demonstrate achieved 
performance. The execution times are then analyzed to ex- 
plicate how the time is spent. Finally, effects of the initial 
temperature are presented to identify the relationship be- 
tween solution quality, initial temperature, and speedup. 
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# procs 
1 

10 
20 
30 

To = 10.0 
200 vars 400 vars 600 vars 800 vars 1000 vars 
1700000 6800000 15300000 27200000 42500000 
171969 685746 1542571 2746130 4289103 
87099 346089 778253 1387589 2166200 
58826 232903 523650 935085 1459176 

40 
50 

To = 100.0 
200 vars 400 vars 600 vars 800 vars 1000 vars 
1700000 6800000 15300000 27200000 42500000 
171969 685746 1542571 2746131 4289104 
87099 346089 778253 1387590 2166202 
58826 232903 523650 935086 1459177 

60 
70 
80 
90 

100 
150 
200 
250 
300 
350 
400 
450 
500 

Average execution time 
# procs #levels Evaluate Decide Comm. Modify 

10 4289103 0.000044 0.000037 0.000058 0.000095 
50 892793 0.000044 0.000037 0.000138 0.000096 

100 469106 0.000044 0.000037 0.000097 0.000096 
200 169936 0.000045 0.000037 0.000187 0.000096 
300 155704 0.000045 0.000037 0.000202 0.000096 
400 144545 0.000045 0.000037 0.000215 0.000096 
500 135926 0.000045 0.000037 0.000228 0.000096 

Total execution time 
Evaluate Decide Comm. Modify 
0.004333 0.003656 0.005713 0.009376 
0.004388 0.003655 0.013635 0.009466 
0.004402 0.003678 0.009632 0.009459 
0.004412 0.003670 0.018553 0.009512 
0.004448 0.003655 0.020012 0.009532 
0.004443 0.003685 0.021316 0.009511 
0.004452 0.003669 0.022614 0.009526 

I 44661 176300 396146 708443 1105041 
I 36173 142343 319695 572800 892793 

30547 119725 268904 482500 751795 
26525 103594 232529 417792 650716 
23513 91453 205290 369335 575037 
21112 82075 184126 331817 516579 
19284 74496 167072 301571 469106 
13653 52038 116440 211791 328506 
10879 40769 91122 166883 258545 
9275 34103 76196 140467 217087 
8851 29702 66185 122876 189306 
8957 26592 59054 110451 169934 
9252 24254 53931 101329 155702 
9401 24746 49842 94254 144543 
9769 24923 46749 88759 135926 

44661 176300 396146 708444 1105043 
36173 142343 319695 572802 892795 
30547 119725 268904 482501 751797 
26525 103594 232529 417793 650718 
23513 91453 205290 369337 575039 
21112 82075 184126 331818 516581 

13653 52038 116440 211792 328508 
10879 40769 91122 166885 258547 
10191 34103 76196 140469 217089 
9161 29702 66185 122877 189308 

10124 26592 59054 110452 169936 
8235 24254 53931 101331 155704 
8724 22969 49842 94256 144545 
9960 25521 46749 88761 135928 

Table 1: Number of levels for the Random L-SAT Problem instances of 200 to 1000 variables on the APlOOO multiprocessor. 

# procs 
1 

10 
20 
30 
40 
50 
60 
70 
80 
90 

100 
150 
200 
250 
300 
350 
400 
450 
500 

To = 10.0 
200 vars 400 vars 600 vars 800 vars 1000 vars 

123.5 493.7 1127.5 2006.3 3210.0 
21.1 83.9 190.5 342.3 544.4 
11.8 46.5 105.4 190.3 301.9 
8.6 33.3 75.4 136.4 215.8 
6.8 26.1 59.0 107.1 169.3 
7.7 29.7 66.9 121.5 191.0 
6.7 25.8 58.2 105.7 166.0 
4.6 17.2 38.9 71.0 111.7 
4.1 15.4 34.7 63.4 99.6 
3.8 14.2 31.9 58.6 91.9 
3.5 13.1 29.5 54.3 85.1 
2.6 9.6 21.7 40.0 62.3 
3.2 11.5 25.6 47.6 74.0 
2.9 10.0 22.4 41.9 64.6 
2.8 9.2 20.4 38.5 59.3 
3.4 8.5 18.9 35.8 55.0 
3.5 8.0 17.8 34.0 52.2 
3.2 7.9 16.8 32.2 49.0 
3.7 9.5 16.6 32.0 48.9 

To = 100.0 
200 vars 400 vars 600 vars 800 vars 1000 vars 

116.7 478.0 1101.4 1943.2 3107.3 
20.9 84.6 193.9 345.3 549.6 
11.7 47.0 107.6 192.5 305.7 
8.5 33.5 76.5 137.4 217.4 
6.7 26.2 60.0 107.9 170.7 
5.7 22.1 50.4 90.9 143.3 
4.9 19.0 43.4 78.5 123.5 
4.4 16.9 38.5 69.9 109.8 
4.0 15.1 34.3 62.4 98.0 
3.7 13.9 31.6 57.7 90.5 
3.4 12.9 29.3 53.5 83.7 
2.6 9.6 21.7 40.0 62.3 
3.1 11.4 25.6 47.5 73.7 
3.2 10.0 22.4 41.9 64.6 
3.0 9.0 20.2 38.0 58.5 
3.5 8.5 18.9 35.8 55.0 
2.9 7.9 17.6 33.5 51.3 
3.2 7.8 16.8 32.2 49.0 
3.7 . 9.2 16.2 31.1 47.4 

Table 2: Execution time in seconds for the Random L-SAT Problem instances of 200 to 1000 variables on the AP1000. 
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# vars # clauses # 1 evels # fl ips # clauses satisfied execution time 

2000 8500 
3000 12750 
4000 17000 
5000 21250 

5.1 SOURCE OF PARALLELISM 

Recall that Table 1 listed the number of levels required for 
different numbers of processors. Figure 5 plots the algorith- 
mic speedup of the approach, which is defined as the ratio 
of the number of levels required on one processor to that 
required on P processors. The graph shows that GSC can 
provide a significant amount of algorithmic improvement. 
Note that the algorithmic speedup is an ideal measure with- 
out actual execution. It simply indicates that the problems 
have a large amount of parallelism that can be exploited. 

513331 299341 8475 (99.71%j 179 secs 
1137647 648178 12716 (99.73%) 399 secs 
2212138 1438930 16962 (99.78%) 793 secs 
3326346 2057900 21219 (99.85%) 1197 secs 

5.2 SPEEDUP USING EXECUTION TIME 

The execution times shown in Table 2 are converted to  
speedup curves to identify the effectiveness of the GSC 
method. Speedup is defined as the ratio of the execution 
time on one processor to that on P processors. The exe- 
cution time speedup curves in Fig. 6 demonstrate the fol- 
lowing three features. First, speedup increases as the num- 
ber of processors is increased. The maximum speedup is 
about 70 on 500 processors. Second, speedup changes very 
little with temperature. This is because the parallelism ex- 
ploited in the experiments comes mostly from the tail of SA, 
where decisions are rarely accepted. Third, speedup changes 
only slightly with problem size. This is a rather unusual 
phenomenon because larger problems tend to possess more 
parallelism than smaller ones, resulting in higher speedup. 
However, it is not true for our experiments because the SAT 
Problem with SA is independent of problem size. 

Recall that an iteration consists of four steps: evaluate, 
decide, communicate, and modify. The evaluation step ran- 
domly selects a variable to flip, independent of the number 
of variables and clauses in the problem. It requires a fixed 
amount of time to find the effect of flipping the variable. 
The decision step is also independent of problem size. It 
decides using the Metropolis equation [12] and a random 
number. The modification step is slightly dependent on the 
problem size. The number of clauses the selected variable 
can appear in is essentially bounded to about 30 for our 
Random L-SAT Problem instances. Even for the 10,000- 
variable/42,500-clause instance, a variable can appear in a 
maximum of 29 clauses. Finally, the communication time 
is independent of the problem size. It only depends on the 
number of processors used. 

To 
0.1 
1.0 

10.0 
100.0 

5.3 ANATOMY OF EXECUTION TIME 

To further understand the behavior of GSC, we plot the 
execution times for the individual steps. Figure 7 shows 
how the total execution time is spent in each step. It plots 
a complete execution time profile of the 1000-variable/4250- 
clause SAT Problem instance with an initial temperature 
of 10.0 on 10, 100, and 500 processors. The x-axis shows 
the level number, but only to 10,000 levels (See Table 1 for 
the total number of levels required). The y-axis shows the 
execution time in ma-seconds for each level. 

The two lower curves in each plot indicate evaluation 
and decision times while the two upper curves indicate com- 
munication and modification times. Note that while the 
evaluation and decision times remain relatively constant, 
the communication and modification times fluctuate at each 
level. The modification time fluctuates because the number 
of clauses modified varies. However, the maximum number 
of clauses modified is limited to 30. The communication 
time fluctuates because of the nondeterministic nature of 
message-passing latency and network traffic. 

Figure 8 summarizes the relationship between the num- 
ber of processors and the percentage of the execution time 
spent on individual steps. When the number of processors 
is greater than 100, more than half the total execution time 
is spent in communication. For 500 processors, the com- 
munication time is almost 60% of the execution time while 
modification requires only about 20%. The evaluation and 
decision steps account for the remaining 20% of the time. 

The curves in Figs. 7 and 8 indicate that a massively- 
parallel or a full-scale implementation needs to be crafted 
to  reduce the communication overhead. It should be noted 
that our method does not broadcast large amounts of data; 
only the three loop indices i ,  j, and A, are broadcast at 
each iteration. Our experience suggests that significant ef- 
fort on massively-parallel implementations of synchronous 
SA should be devoted to the communication step. 

1000 vars 200 vars 400 vars 600 vars 800 vars 
849 (99.9%) 1692 (99.5%) 2541 (99.7%) 3379 (99.4%) 4240 (99.8%) 
848 (99.8%) 1695 (99.5%) 2542 (99.7%) 3383 (99.5%) 4236 (99.7%) 
848 (99.8%) 1695 (99.5%) 2542 (99.7%) 3383 (99.5%) 4236 (99.7%) 
848 (99.8%) 1695 (99.5%) 2542 (99.7%) 3383 (99.5%) 4236 (99.7%) 

6 SUMMARY AND CONCLUSIONS 

Testing the satisfiability of large Random L-SAT Problem 
instances is a challenging and time-consuming task. This 
report has presented a practical approach using synchronous 
simulated annealing (SA) on the APlOOO massively-parallel 
distributed-memory multiprocessor. We selected problem 
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Figure 5: Algorithmic speedup on the APlOOO using GSC 
with TO = 10.0 (top) and TO = 100.0 (bottom). 

instances between 100-variables/425-clauses and 5000-van- 
ables/21,250-clauses with initial temperatures of 0.001 to 
100.0. These test cases have been executed on 1 to 500 
processors and a part of the results have been reported here. 

We used Generalized Speculative Computation (GSC) 
which is able to execute P different iterations in parallel 
on P processors using loop indices. This simplifies program 
control, making it suitable for massively-parallel distributed- 
memory multiprocessors. The GSC technique also simplifies 
communication by sending loop indices to all the proces- 
sors. The three loop indices uniquely determine the random 
numbers for the entire SA process. In addition, the GSC 
approach is synchronous, giving the same decision sequence 
and solution quality as sequential SA regardless of the num- 
ber of processors used. 

Experimental results have demonstrated that GSC is ef- 
fective for testing the Random L-SAT Problem. The 1000- 
variable/4250-clause problem instance for an initial temper- 
ature of 10.0 required almost 54 minutes on a single pro- 
cessor but only 49 seconds on 500 processors, while satisfy- 
ing 4236 clauses. The 5000-variable/21,250-clause problem 
instance required about 20 minutes while satisfying 21,219 
clauses. Overall, we have obtained nearly a 70-fold speedup 
on 500 processors. This is encouraging, considering that SA 
is highly sequential due to loopcarried dependence. 

We found that the GSC method is effective for both low 
and high initial temperatures of up to 100.0; however, in- 
creasing the initial temperature rarely improved the solu- 
tion quality. This indicates that high initial temperatures 
are not always practical nor preferable. 

“t 80 

I 
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Number of processors 

Figure 6: Execution time speedup on the APlOOO using GSC 
with To = 10.0 (top) and TO = 100.0 (bottom). 

Finally, we have found that the communication time 
dominates the computation time. The evaluation and de- 
cision steps account for only 20% of the total time, and the 
modification step for another 20%. On the other hand, al- 
most 60% of the total execution time is spent in communica- 
tion. This dominance of the communication time certainly 
prefers problems with longer computation times. Reducing 
the communication overhead will result in an even better 
performance by GSC. 
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